Do Chords Last Longer as Songs Get Slower?: Tempo Versus Harmonic Rhythm in Four Corpora of Popular Music

> Trevor de Clercq MIDDLE TENNESSEE

> > STATE UNIVERSITY

Music Informatics Interest Group Meeting Society for Music Theory November 3, 2018 San Antonio, TX

Slides available at: <a href="https://www.midside.com/presentations/">www.midside.com/presentations/</a>

*Slides available at:* <u>www.midside.com/presentations/</u>

#### **Tempo Versus Harmonic Rhythm**

#### Allan Moore (2001, p. 42)

— "... the consistent appearance of a snare drum on the second and fourth beats of a bar allows this length [i.e., the bar] to be standardized."

— "As a result, we will find that rock songs *tend* to change harmony every bar."

*Slides available at:* <u>www.midside.com/presentations/</u>

#### **Tempo Versus Harmonic Rhythm**

#### Allan Moore (2001, p. 42)

- "... the consistent appearance of a snare drum on the second and fourth beats of a bar allows this length [i.e., the bar] to be standardized."

— "As a result, we will find that rock songs *tend* to change harmony every bar."

#### Average chord durations overall in the RS 200, in bars

| Chords     | Mean | <b>Trimmed Mean*</b> | Median | Mode |
|------------|------|----------------------|--------|------|
| All chords | 4.90 | 1.42                 | 1.23   | 1.00 |
| Tonic      | 6.19 | 2.03                 | 1.59   | 1.00 |
| Non-Tonic  | 1.14 | 1.03                 | 1.00   | 1.00 |

— source: de Clercq 2017, Table 11

\* excludes top and bottom 10% of values (i.e., middle 80%)

*Slides available at:* <u>www.midside.com/presentations/</u>

#### **Tempo Versus Harmonic Rhythm**

#### Allan Moore (2001, p. 42)

- "... the consistent appearance of a snare drum on the second and fourth beats of a bar allows this length [i.e., the bar] to be standardized."

— "As a result, we will find that rock songs *tend* to change harmony every bar."

| Chords     | Mean | Trimmed Mean* | Median | Mode |
|------------|------|---------------|--------|------|
| All chords | 4.90 | 1.42          | 1.23   | 1.00 |
| Tonic      | 6.19 | 2.03          | 1.59   | 1.00 |
| Non-Tonic  | 1.14 | 1.03          | 1.00   | 1.00 |

#### Average chord durations overall in the RS 200, in bars

*Implied Hypothesis:* As the tempo of a song decreases, average chord duration increases (and vice versa)

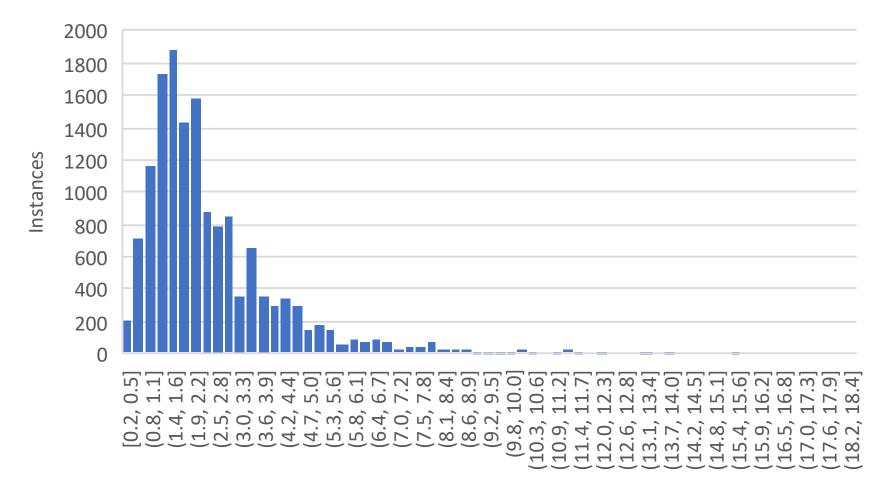
#### "Axis" progression (vi - IV - I - V) examples

Taylor Swift, "You're Not Sorry" (2008)
— 67 BPM, chord durations = 0.5 bar, 1.79 seconds

- Justin Bieber, "Love Me" (2009)
   125 BPM, chord durations = 1.0 bar, 1.92 seconds
- The Offspring, "The Kids Aren't Alright" (1998) — 201 BPM, chord durations = 2.0 bars, **2.39 seconds**

- "Axis" progression (vi IV I V) examples
  - Taylor Swift, "You're Not Sorry" (2008)
  - -67 BPM, chord durations = **1.0** bar, **1.79** seconds
  - Justin Bieber, "Love Me" (2009)
  - 125 BPM, chord durations = 1.0 bar, **1.92 seconds**
  - The Offspring, "The Kids Aren't Alright" (1998)
     201 BPM, chord durations = 1.0 bar, 2.39 seconds
- **de Clercq (2016):** Measure length considerations in pop/ rock are often best guided by a 2-second ideal bar.

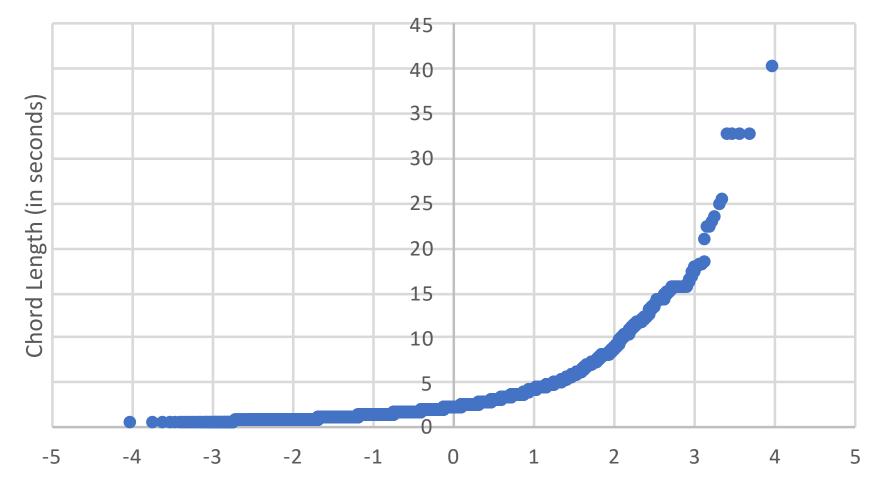
**de Clercq (2016):** Measure length considerations in pop/ rock are often best guided by a 2-second ideal bar. ?????????????


# . A Corpus Study

## A Corpus Study A Corpora Study

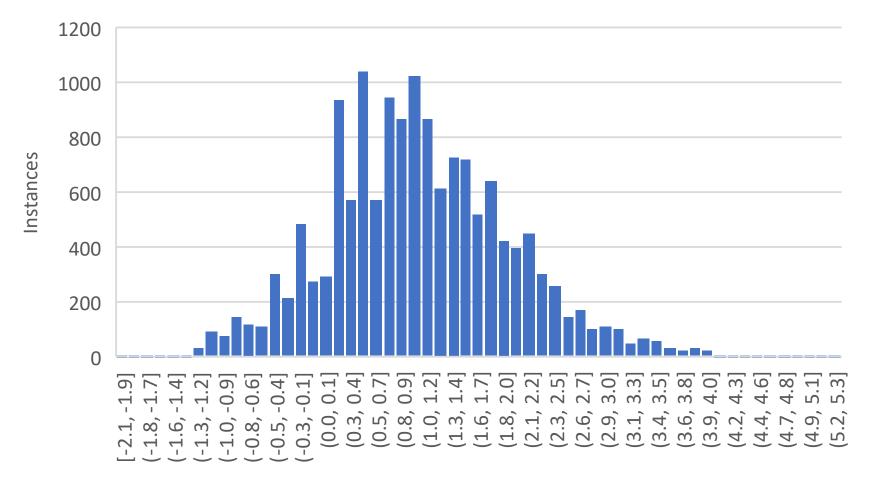
- The 200-song *Rolling Stone* magazine rock corpus — **RS 200** (Temperley & de Clercq, 2013)
- The 200-song *Nashville Number* country corpus — **NN 200** (de Clercq, 2015)
- The 739-song McGill *Billboard* charts corpus — MG 739 (Burgoyne, Wild, & Fujinaga, 2011)
- The 179-song Beatles corpus — **BE 179** (Harte, 2010)

Chord lengths (secs) are log-normally distributed


Histogram of chord lengths in NN 200

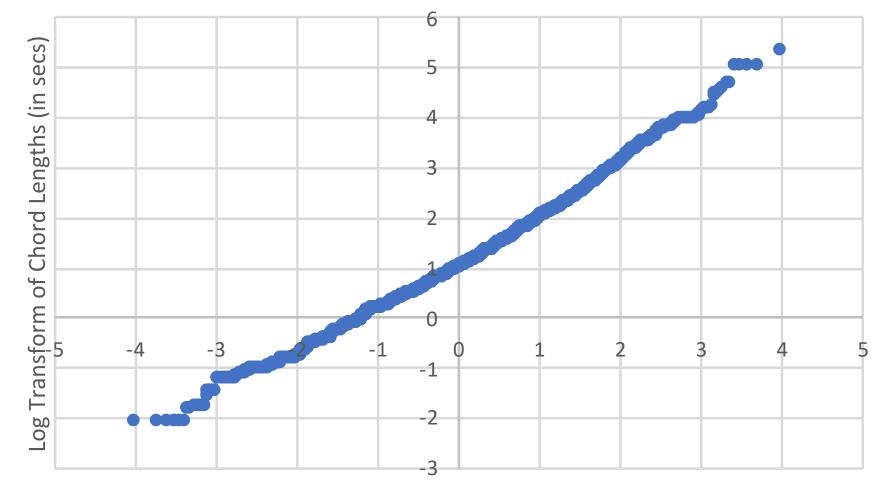


Chord Length (in seconds)


Chord lengths (secs) are log-normally distributed

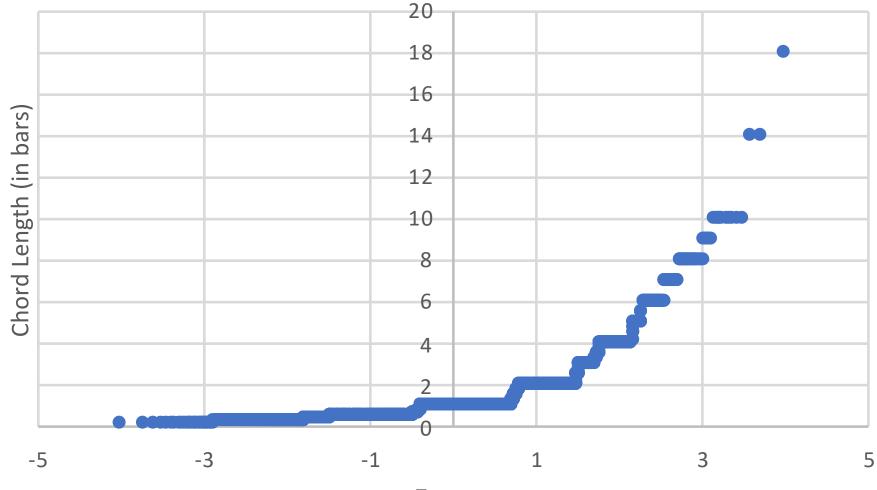
Q-Q plot of chord lengths (in seconds) in NN 200



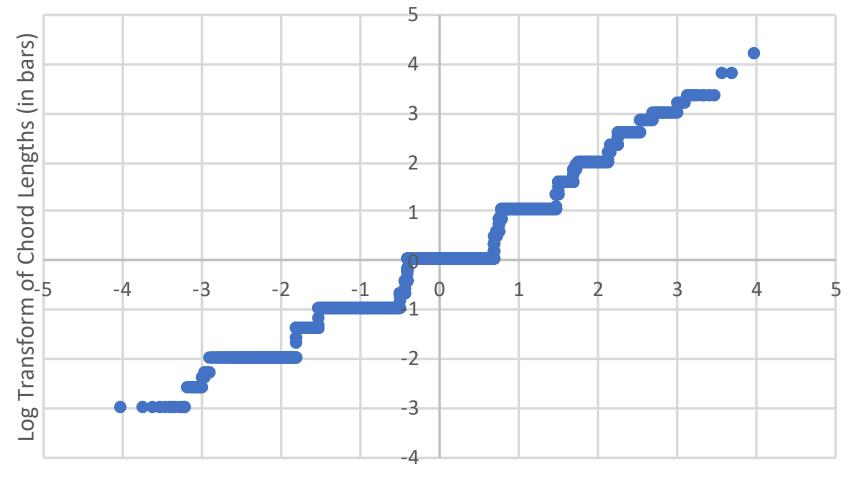

## Chord lengths (secs) are log-normally distributed

Histogram of base-2 log transform of chord lengths in NN 200

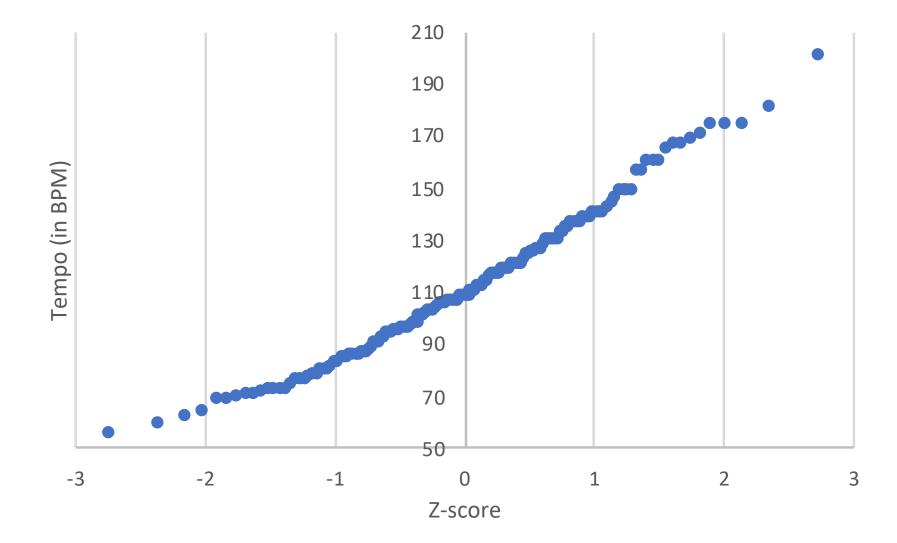



Log Transformation of Chord Lengths (in seconds, base 2)

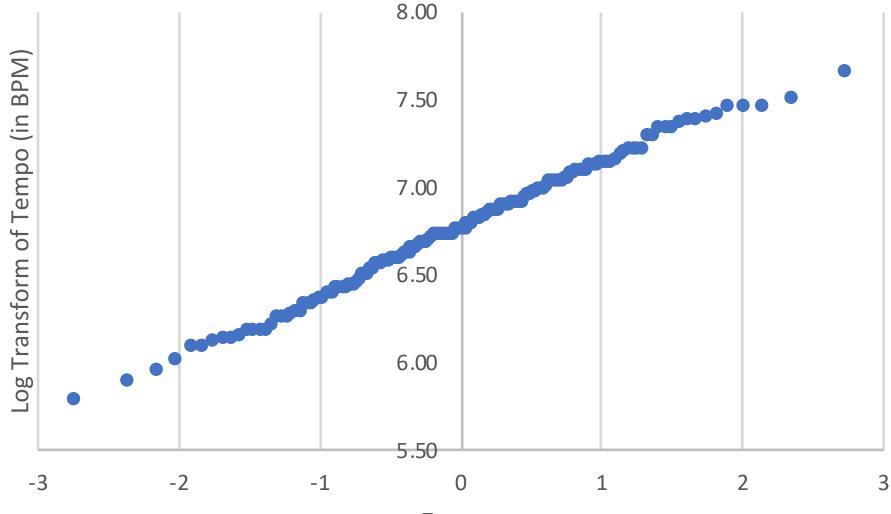
## Chord lengths (secs) are log-normally distributed Q-Q plot of log (base 2) of chord lengths (in seconds) in NN 200




Chord lengths (bars) are log-normally distributed


Q-Q plot of chord lengths (in bars) in NN 200




## Chord lengths (bars) are log-normally distributed Q-Q plot of log (base 2) of chord lengths (in bars) in NN 200



#### Tempo is only weakly log-normally distributed Q-Q plot of tempos (in BPM) in NN 200



Tempo is only weakly log-normally distributed Q-Q plot of log transform (base 2) of tempos (in BPM) in NN 200



Z-score

- $H_0$ : Songs in 4/4 with different median chord lengths have, on average, no difference in tempo
- $H_1$ : Songs in 4/4 with shorter median chord lengths have, on average, a slower tempo

- $H_0$ : Songs in 4/4 with different median chord lengths have, on average, no difference in tempo
- $H_1$ : Songs in 4/4 with shorter median chord lengths have, on average, a slower tempo

### NN 200 results

| Median Chord Length | gMean Tempo | Ν  |
|---------------------|-------------|----|
| 0.5 bars            | 97.8        | 28 |
| 1.0 bar             | 109.1       | 85 |
| 2.0 bars            | 121.8       | 27 |

| Comparison           | t (one-tail   | led) p |
|----------------------|---------------|--------|
| 0.5 bars to 1.0 bar  | t(111) = 2.03 | .02    |
| 1.0 bar to 2.0 bars  | t(110) = 1.96 | .03    |
| 0.5 bars to 2.0 bars | t(53) = 3.37  | <.01   |

- $H_0$ : Songs in 4/4 with different median chord lengths have, on average, no difference in tempo
- $H_1$ : Songs in 4/4 with shorter median chord lengths have, on average, a slower tempo

### **RS 200 results**

| Median Chord Length | gMean Tempo | Ν  |
|---------------------|-------------|----|
| 0.5 bars            | 100.5       | 51 |
| 1.0 bar             | 115.6       | 71 |
| 2.0 bars            | 139.3       | 29 |

| Comparison           | t (one-tai    | iled) p |
|----------------------|---------------|---------|
| 0.5 bars to 1.0 bar  | t(120) = 3.18 | <.001   |
| 1.0 bar to 2.0 bars  | t(98) = 3.31  | <.001   |
| 0.5 bars to 2.0 bars | t(78) = 5.80  | < .0001 |

- $H_0$ : Songs in 4/4 with different median chord lengths have, on average, no difference in tempo
- $H_1$ : Songs in 4/4 with shorter median chord lengths have, on average, a slower tempo

### MG 739 results

| Median Chord Length | gMean Tempo | Ν   |
|---------------------|-------------|-----|
| 0.5 bars            | 103.1       | 223 |
| 1.0 bar             | 117.6       | 305 |
| 2.0 bars            | 139.1       | 80  |

| Comparison           | t (one-ta     | iled) p  |
|----------------------|---------------|----------|
| 0.5 bars to 1.0 bar  | t(526) = 5.81 | < .00001 |
| 1.0 bar to 2.0 bars  | t(383) = 5.22 | <.00001  |
| 0.5 bars to 2.0 bars | t(301) = 8.57 | <.00001  |

- $H_0$ : Songs in 4/4 with different median chord lengths have, on average, no difference in tempo
- $H_1$ : Songs in 4/4 with shorter median chord lengths have, on average, a slower tempo

## **BE 179 results**

| <b>Median Chord Length</b> | gMean Tempo | Ν  |
|----------------------------|-------------|----|
| 0.5 bars                   | 94.3        | 33 |
| 1.0 bar                    | 122.5       | 76 |
| 2.0 bars                   | 128.4       | 12 |

| Comparison           | t (one-ta     | iled) p |
|----------------------|---------------|---------|
| 0.5 bars to 1.0 bar  | t(107) = 6.17 | <.00001 |
| 1.0 bar to 2.0 bars  | t(86) = 0.76  | .23     |
| 0.5 bars to 2.0 bars | t(43) = 3.78  | .0002   |

- $H_0$ : Songs in 4/4 with different tempos have, on average, no difference in chord lengths as measured in bars.
- $H_1$ : Songs in 4/4 with slower tempos have, on average, shorter chord lengths as measured in bars than songs with faster tempos.

•  $H_0$ : Songs in 4/4 with different tempos have, on average, no difference in chord lengths as measured in bars.

•  $H_1$ : Songs in 4/4 with slower tempos have, on average, shorter chord lengths as measured in bars than songs with faster tempos.

## NN 200 results

5 bins (N = 32 songs)

| gMean Tempo | gMean Length (Bars) | gMean Length (Secs) |
|-------------|---------------------|---------------------|
| 74.2        | 0.79                | 2.53                |
| 93.7        | 0.96                | 2.44                |
| 108.5       | 1.01                | 2.24                |
| 124.8       | 1.21                | 2.32                |
| 153.4       | 1.36                | 2.13                |
| High / Low  | 1.73                | 1.19                |

•  $H_0$ : Songs in 4/4 with different tempos have, on average, no difference in chord lengths as measured in bars.

•  $H_1$ : Songs in 4/4 with slower tempos have, on average, shorter chord lengths as measured in bars than songs with faster tempos.

## **RS 200 results**

5 bins (N = 32 songs)

| gMean Tempo | gMean Length (Bars) | gMean Length (Secs) |
|-------------|---------------------|---------------------|
| 79.6        | 0.74                | 2.22                |
| 100.5       | 0.86                | 2.03                |
| 115.6       | 0.99                | 2.06                |
| 130.3       | 1.20                | 2.22                |
| 169.6       | 1.48                | 2.11                |
| High / Low  | 2.00                | 1.05                |

•  $H_0$ : Songs in 4/4 with different tempos have, on average, no difference in chord lengths as measured in bars.

•  $H_1$ : Songs in 4/4 with slower tempos have, on average, shorter chord lengths as measured in bars than songs with faster tempos.

MG 739 results

5 bins (N = 134 songs)

| gMean Tempo | gMean Length (Bars) | gMean Length (Secs) |
|-------------|---------------------|---------------------|
| 75.9        | 0.71                | 2.22                |
| 102.5       | 0.93                | 2.15                |
| 117.2       | 0.90                | 1.84                |
| 130.7       | 0.90                | 1.65                |
| 164.3       | 1.19                | 1.75                |
| High / Low  | 1.68                | 1.27                |

•  $H_0$ : Songs in 4/4 with different tempos have, on average, no difference in chord lengths as measured in bars.

•  $H_1$ : Songs in 4/4 with slower tempos have, on average, shorter chord lengths as measured in bars than songs with faster tempos.

**BE 179 results** 5 bing (N = 28 songe)

5 bins (N = 28 songs)

| gMean Tempo | gMean Length (Bars) | gMean Length (Secs) |
|-------------|---------------------|---------------------|
| 80.8        | 0.68                | 2.01                |
| 101.8       | 0.75                | 1.78                |
| 121.2       | 0.89                | 1.76                |
| 131.4       | 0.97                | 1.77                |
| 152.1       | 1.14                | 1.81                |
| High / Low  | 1.69                | 1.11                |

#### **BIBLIOGRAPHY**

- Burgoyne, J. (2011). *Stochastic Processes and Database-Driven Musicology*. (Unpublished doctoral dissertation). McGill University, Montréal, PQ, Canada.
- Burgoyne, J., Wild, J., & Fujinaga, I. (2011). An Expert Ground Truth Set for Audio Chord Recognition and Music Analysis. In A. Klapuri & C. Leider (Eds.), *Proceedings of the 12th International Society for Music Information Retrieval Conference* (pp. 633–38). Miami, FL.
- de Clercq, T. (2015). The Nashville Number System Fake Book. Milwaukee, WI: Hal Leonard.
  - ——. (2016). Measuring a Measure: Absolute Time as a Factor for Determining Bar Lengths and Meter in Pop/Rock Music. *Music Theory Online*, 22 (3).
- ——. (2017). Interactions between Harmony and Form in a Corpus of Rock Music. *Journal of Music Theory*, 61 (2): 143–170.
- ——. (Under review). "A Corpus Analysis of Harmony in Country Music." In D. Shanahan, A. Burgoyne, and I. Quinn, *The Oxford Handbook of Music and Corpus Studies*. New York, NY: Oxford University Press.
- de Clercq, T. & Temperley, D. (2011). A Corpus Analysis of Rock Harmony. *Popular Music*, 30 (1): 47–70.
- Harte, C. (2010). *Towards Automatic Extraction of Harmony Information from Music Signals*. (Unpublished doctoral dissertation). University of London, London, UK.
- Lerdahl, F. & Jackendoff, R. (1983). *A Generative Theory of Tonal Music*. Cambridge, MA: MIT Press.
- Moore, A. (2001). *Rock: The Primary Text: Developing a musicology of rock*, 2nd ed. Aldershot, UK: Ashgate Press.
- Temperley, D. & de Clercq, T. (2013). Statistical Analysis of Harmony and Melody in Rock Music. *Journal of New Music Research* 42 (3): 187–204.