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Lewin: K-nets and GIS 

 

 In his article on Klumpenhouwer networks (or K-nets), David Lewin explains how to 

represent intervallic relations within trichords and tetrachords via a network structure.  These 

networks, named after his student Henry Klumpenhouwer, show how each note of a pitch-set can 

transpose or invert into the other notes of the collection; Lewin uses a standard Tn/In labeling 

system for this purpose.  When two sets of notes display similar transpositional and inversional 

characteristics, Lewin asserts that, due to their similar network structures, they are therefore 

isographic.  He goes on to explore different types of isography using concrete examples from the 

music repertoire, while also making these isographies explicit through mathematical proofs and 

definitions.  Furthermore, Lewin develops recursive structures, i.e. networks-of-networks, to 

demonstrate hierarchical levels of organization based on transformational theory.   

 Lewin begins his discussion of K-nets by giving some "basic properties."  In his Figure 2, 

he shows how multiple and different networks can be constructed to describe the 

transformational characteristics of a single trichord.  Lewin is thus already implicitly evoking the 

role of the theorist in not simply labeling features of the music, but rather in organizing and 

shaping the musical content of a work via analysis in order to create a more unified picture of the 

whole.  When the theorist has organized two trichords such that their network structures are 

identical, Lewin calls these networks strongly isographic.  This strongly isographic relationship 

allows theorists to relate trichords of different set-classes that do not share the exact same 

intervallic content.  Trichords of the same set-class, however, even those that are literal 

transpositions of one another, are not strongly isographic.  In other words, a trichord under 

transposition will not have an identical network structure as the original.  Instead of isographic, 

Lewin terms this relationship a network isomorphism, meaning the two trichords have the same 

shape (but slightly different graphs due to transposition). 

 If two trichords are strongly isographic and then one of the trichords is transposed, the 

two trichords lose their strong isography.  Yet all that has occurred is that one of the trichords 

has been transposed (via a network isomorphism).  Since the intervallic structure of the trichords 

has remained the same, this transposed trichord must still relate back somehow to its original 

strongly-isographic partner.  Lewin thus gives four more categories of isography, all of which 

describe cases where one trichord of a strongly isographic pair has undergone some sort of 

transformation.  In the case of transposition (Rule 1), Lewin calls the relation positive isography.  

He uses the notation <1,j> to describe positive isography between trichords, with j representing 

the amount of transposition of the second trichord away from a strongly-isographic state with the 

first trichord.  In the accompanying case of inversion (Rule 2), Lewin uses the notation <11,j> 

and calls this negative isography, with j representing the level of inversion.  Thus, if one trichord 

of a strongly isographic pair of trichords undergoes an I4 transformation, for instance, Lewin 

labels the relation of the new trichord to its original strongly isographic partner as <11,4>.  

Isographies under transformations via M5 and M7 are also defined (<5,j> and <7,j> respectively), 

but Lewin does not go into much more detail or provide further examples of such M-relations.   

 In order to fully expose just how "flexible and powerful" K-net resources are, Lewin 

shifts to an analysis of certain aspects from a small section of Schoenberg's Pierrot Lunaire No. 

4.  In this analysis, Lewin carefully labels each network he builds out of notes from mm. 13-14 

in the piece.  He then proceeds to derive the <1,j> or <11,j> relations between each graph.  The 

crucial step for Lewin is creating an analogy between <1,j>/<11,j> isographies and Tn/In 

transformations, because once this analogous function is understood, Lewin can create 

Klumpenhouwer networks out of the <1,j> and <11,j> isographies themselves.  One culmination 
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for this line of thinking is Lewin's Figure 11, where he shows how the network structure of a 

local trichord maps exactly to the network structure of the local networks themselves.  In this 

example, Lewin is also careful to point out that much of the ability to create such low- and high-

level relationships stems from the flexibility of K-nets to interpret pitch-class sets in a variety of 

ways, thereby allowing the theorist to mold this organization to his or her needs.  In a further 

example taken from this piece (Example 12), Lewin again demonstrates how higher hierarchical 

levels of K-nets "prolong" structures of the trichords themselves, this prolongation being akin to 

the prolongation of tonic and dominant harmonies in tonal music. 

 This "recursive" nature of Klumpenhouwer networks undergoes further exploration in the 

article.  First, Lewin proves the mathematical validity of relating <1,j> and <11,j> functions to 

Tn/In transformations.  He allows for a limitless extension of networks-of-networks, adding that 

isographies may be applied between any level of the system and another.  Again, the reader is 

reminded that the chords of the music do not inherently give network structures, but that the 

theorist must construct the graphs as interpretations.  Furthermore, configuring such 

interpretations is not an "automatic affair" but rather "a combination of art and will".   

 To reinforce the role of the theorist in developing networks that elucidate the most salient 

musical relationships in a work, Lewin returns to a musical analysis of Pierrot Lunaire.  In this 

example, Lewin seeks to show how the opening harmonies of a particular phrase elaborate 

(through their network structure) an important augmented triad sonority that closes the phrase.  

Lewin picks between positive and negative isographic representations of the harmonies to better 

bolster his theoretical case.  Figure 16 is contrasted against Figure 15; while both interpretations 

develop recursive networks based on the structure of the augmented triad, the latter shows the 

elaboration of characteristics more particular to the augmented triad than Figure 16.  Thus, 

Lewin has implied that certain recursive structures are more useful and theoretically revealing 

than others. 

 In the final and lengthy analytical section of his paper, Lewin delves into another phrase 

from Pierrot Lunaire to demonstrate the use of tetrachords arranged in Klumpenhouwer 

networks.  Since tetrachords (like trichords) can be interpreted in a variety of  different ways by 

isographic networks, Lewin looks separately at four distinct interpretations (called "MODE"s).  

MODE I and MODE II analyze tetrachords based on finding a common trichord within each.  A 

parachute-like graph results from this common tetrachord.  Lewin is able to preserve his <1,j> 

and <11,j> relationships between these tetrachordal networks, thus allowing him to develop 

higher-level parachute-like tetrachordal networks such as his Figure 19.  For his MODE III and 

MODE IV analyses, Lewin extracts two common dyads out of each tetrachord.  The result is a 

circular-type network graph such as is shown in Figure 26.  Again, <1,j> and <11,j> 

relationships persist, allowing higher-level circular-type network graphs to describe the recursive 

network structure of this phrase.  Through his variety of MODE examples, Lewin thus exhibits 

how a variety of Klumpenhouwer networks can show valid and hierarchical interpretations for a 

given piece of music.  But although Lewin is careful to show how certain interpretations 

involving K-nets represent more organic views of the music's organization, he does not give the 

reader any tools with which to determine whether any one network realization is more musically 

valid than another, i.e. which network bests represents what either the composer intended for the 

work and/or the listener perceives when hearing the work. 
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Table of Lewin's GIS examples (from Generalized Music Intervals and Transformations, 1987) 

Example space (S) IVLS int(s,t) 

2.1.1 the diatonic gamut, 

extended indefinitely up 

and down 

(A1,B1,C1...D4...D5..etc.) 

all integers (positive and 

negative) including zero 

number of steps from s to 

t; positive for steps up, 

negative for steps down 

2.1.2 chromatic scale, extended 

indefinitely up and down 

all integers (positive and 

negative) including zero 

number of semitones from 

s to t; positive for steps up, 

negative for steps down 

2.1.3 the twelve pitch classes integers modulo 12 

(0,1,2,3,4,5,6,7,8,9,T,E) 

the number of hours 

clockwise from s to t on a 

12-hour clock 

2.1.4 seven pitch classes 

corresponding to the 

diatonic gamut 

integers modulo 7 

(0,1,2,3,4,5,6) 

the number of hours 

clockwise from s to t on a 

7-hour clock 

2.1.5 family of "pitches" 

available from a given 

pitch under just intonation 

all rational numbers that 

can be expressed via 

2
a
3

b
5

c
, where a, b, and c 

are integers 

the frequency of t divided 

by the frequency of s, i.e. 

FQ(t)/FQ(s) 

2.1.6 the "game board" of 

Lewin's Figure 2.2 (circle 

of 5ths left-right, cycle of 

M3s up-down) 

(b, c) where b and c are 

integers 

(b, c) where t lies b 

squares to the right and c 

squares above s on the 

game board 

2.2.1 a succession of regularly-

spaced time points pulsing 

"one time unit" apart"  

all integers (positive and 

negative) including zero 

the number of time units 

by which t is later than s 

(negative numbers 

indicating an earlier value) 

2.2.2 the space of 2.2.1 wrapped 

around an N-hour clock 

(like a musical measure) 

integers modulo N  

(0,1,2,3,...N-1) 

the number of hours 

clockwise that t lies from s 

on the N-hour clock 

2.2.3 a family of durations, each 

duration measured in 

positive integer values of 

time units 

a group of positive ratios, 

based on the chosen 

rhythmic durations 

the durational quotient of t 

divided by s  

(t units/s units) 

2.2.4 the space of 2.2.3 reduced 

to equivalence classes by a 

durational modulus M 

greater than 1 

the IVLS of 2.2.3 reduced 

to ratio-classes by powers 

of M 

the durational quotient of t 

divided by s, reduced by 

modulus M 

2.2.5 a family of durations (like 

2.2.3) that are measured in 

units of time 

all integers (positive and 

negative) including zero 

the difference of time units 

between s and t; because 

of the potential for 

negative values of t, this 

example is not a GIS 

2.2.6 the durations of 2.2.5 

reduced by modulus M to 

duration-classes 

integers modulo M 

(0,1,2,3,....M-1)  

the number of hours 

clockwise that t lies from s 

on the M-hour clock 


