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Cycles and Geometrical Symmetry 

 

 The Western equal-tempered chromatic scale is based on the fundamental principle of 

dividing the octave evenly into twelve equal steps.  Since each octave is twice the frequency of 

the last, this equal division requires a base-2 logarithmic scale, which allows each note to retain 

octave equivalency to all frequencies related by multiples of two.  With twelve equal steps in an 

octave, therefore, each step in the musical scale must be 2
1/12

 times the frequency of the last 

step.   

 For convenience of illustration, musicologists often show the twelve notes of a chromatic 

scale in a circular pattern, much like Fig. 1.  Sometimes nicknamed "the clock", this circular 

representation of the twelve notes often appears in books on atonal theory.  While not useful for 

seeing overtone (i.e. consonance and dissonance) relationships between notes since such 

relationships are based on linear ratios between frequencies, the logarithmically-derived circular 

pattern is useful for viewing the types of "symmetrical" relationships used by twentieth-century 

composers.   

 In mathematics, a circular space is often graphed with what are known as "polar 

coordinates."  In Fig. 2, a standard polar plot is shown with angles in terms of degrees at 30º 

intervals.  As can easily be seen by comparing Figs. 1 and 2, the circular representation of the 

equal-tempered chromatic scale and a polar plot with increments of 30º share much in common.  

We can thus think about chromatic pitch-space as a polar space, using mathematical functions 

and terminology to discuss atonal musical techniques such as transposition and inversion.   

 Figs. 3-18 show all the cases for each cycle where pitch-class content remains the same, 

i.e. where pitch-class content is invariant.  For example, Figs. 6-9 are various mappings of 3-

cycles (called tricycles by me because it's more fun that way).  Fig. 6 represents pitch-class set 

[048] mapped into polar space, the set inscribing itself as an equilateral triangle when the 

musical-note coordinates are connected with straight lines.  Fig. 6 also represents transpositions 

of pitch-class set [048] at T0, T4, and T8.  The graphical equivalence of these transpositional 

levels can be proven if one manually transposes [048] through these transpositional levels and 

then compares the results to the original graph.   

 One can also transpose these sets via graphical methods, using the polar plots to more 

visually (and perhaps more easily) see transpositional levels.  Each transpositional increment 

equates to an increase of 30º for the shape inscribed within the circle when its pitch-class 

members are mapped.  For example, a transpositional level of 5 (T5) equals (5 * 30º), or 150º of 

rotation.  Thus, if we take our original [048] set class and submit its resultant triangle to 150º 

rotation within the polar plot, we arrive at the shape shown in Fig. 7, i.e. pitch-class set [159].  

Doing a quick manual transposition easily confirms this process.   

 In addition to transposition, the graphical representations of the pitch-class sets also 

allow us to easily see the process of inversion.  Inversion is graphically represented by reflecting 

each shape across the 0º-180º axis. Referring back to Fig. 7's graph of [159], we see that reflecting 

across the 0º-180º axis gives us the shape in Fig. 9, a graph of [37E].  Thus, [37E] is the inversion 

of [159].  Inversion can also be accomplished on these polar plots through more mathematical 

methods.  This reflection procedure is achieved by simply multiplying each angle (or polar 

coordinate) by -1, e.g. "taking the negative" of each coordinate.  Again, using Fig. 7 as our starting 



9/22/06 Trevor de Clercq TH513 Headlam 

 - 2 - 

set, the polar coordinates of each point are [30º, 150º, -90º].  By multiplying each member by -1, 

we end up with [-30º, -150º, 90], coordinates that match exactly with those of Fig. 9.   

 It should be pointed out that some shapes are symmetrical around the 0º-180º axis while 

others are not, and this makes a big difference as to order of transposition and inversion.  If we 

look at Figs. 6, 8, 10, etc., we see that inversion does not change the pitch-class content, i.e. the 

contents of these pitch-class sets are invariant under inversion.  Invariance does not occur, 

however, with those geometric figures that are not symmetrical around the 0º-180º axis, such as 

Figs. 7, 9, 11, etc.  With this latter category, inversion causes a change in the pitch-class content 

of the set.  Therefore, the order of transposition and inversion matters greatly, for if one 

transposes into an invariant set, inversion afterwards will cause no change in pitch-class content.  

To give a situation that explicates such order dependence, let us take [048] and submit it to T1 

and then I.  We can easily see that we are left with set [37E].  However, if we take [048] and 

submit it first to I and then T1, we can see how we end up with set [159].  The reason for this 

difference is that the initial inversion on [048] made no change to the contents of the set.  Of 

course, this order-dependent nature of transposition and inversion does not make a difference in 

every situation, for if one transposes both to and from an inversionally-invariant set, the order in 

which the inversion process occurs does not matter.   

 

Symmetrical relations within the English alphabet: 

 

Reflects into itself across the Y-axis: 

A, H, I, M, O, T, U, V, W, X, Y 

i, l, m, n, o, t, u, v, w, x 

 

Reflects into itself across the X-axis: 

B, C, D, E, H, I, O, X 

c, l, o, x 

 

Rotates into itself: 

H, I, N, O, S, X, Z 

l, o, s, x, z 

 

Rotationally-related pairs: 

M & W 

a & e, b & q, d & p, m & w, n & u 

 

Reflexively-related pairs: 

b & d, p & q 

 

Pairs related by rotation and reflection: 

b & p, d & q 
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Trevor de Clercq

TH 513 Headlam

9/22/06

Fig. 1: Mapping PCs to Polar Space Fig. 2: Basic Polar Coordinates

Fig. 3: Unicycle and

Quinquecycle at

all levels of T and I
Fig. 4: Bicycle at even 

levels of T and TI

Fig. 5: Bicycle at odd 

levels of T and TI

Fig. 6: Tricycle at 

T0, T4, T8, and 

T0I, T4I, T8I

Fig. 7: Tricycle at 

T1, T5, T9, and 

T3I, T7I, T11I

Fig. 8: Tricycle at

T2, T6, T10, and

T2I, T6I, T10I

Fig 9: Tricycle at

T3, T7, T11, and

T1I, T5I, T9I 
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Fig. 10: Quadricycle at

T0, T3, T6, T9, and

T0I, T3I, T6I, and T9I

Fig. 11: Quadricycle at

T1, T4, T7, T10, and

T2I, T5I, T8I, T11I

Fig. 12: Quadricycle at

T2, T5, T8, T11, and

T1I, T4I, T7I, T10I
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Fig. 13: Sexicycle at

T0, T6, and

T0I, T6I

Fig. 14: Sexicycle at

T1, T7, and

T5I, T11I

Fig. 15: Sexicycle at

T2, T8, and

T4I, T10I

Fig. 16: Sexicycle at

T3, T9, and

T3I, T9I

Fig. 17: Sexicycle at

T4, T10, and

T2I, T8I

Fig. 18: Sexicycle at

T5, T11, and

T1I, T7I
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